Title of article :
Recursive maximum likelihood parameter estimation for state space systems using polynomial chaos theory
Author/Authors :
Pence، نويسنده , , Benjamin L. and Fathy، نويسنده , , Hosam K. and Stein، نويسنده , , Jeffrey L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
5
From page :
2420
To page :
2424
Abstract :
This paper combines polynomial chaos theory with maximum likelihood estimation for a novel approach to recursive parameter estimation in state-space systems. A simulation study compares the proposed approach with the extended Kalman filter to estimate the value of an unknown damping coefficient of a nonlinear Van der Pol oscillator. The results of the simulation study suggest that the proposed polynomial chaos estimator gives comparable results to the filtering method but may be less sensitive to user-defined tuning parameters. Because this recursive estimator is applicable to linear and nonlinear dynamic systems, the authors portend that this novel formulation will be useful for a broad range of estimation problems.
Keywords :
Estimation theory , Identification methods , Maximum likelihood , Linear/nonlinear models , Polynomial chaos theory
Journal title :
Automatica
Serial Year :
2011
Journal title :
Automatica
Record number :
1448503
Link To Document :
بازگشت