Title of article :
Convergence analysis of an online approach to parameter estimation problems based on binary observations
Author/Authors :
Jafari، نويسنده , , Kian and Juillard، نويسنده , , Jérôme and Roger، نويسنده , , Morgan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
In this paper, we present an online identification method to the problem of parameter estimation from binary observations. A recursive identification algorithm with low-storage requirements and computational complexity is derived. We prove the convergence of this method provided that the input signal satisfies a strong mixing property. Some simulation results are then given in order to illustrate the properties of this method under various scenarios. This method is appealing in the context of micro-electronic devices since it only requires a 1-bit analog-to-digital converter, with low power consumption and minimal silicon area.
Keywords :
Parameter estimation , System identification , Binary signals , Convergence analysis , LMS algorithm
Journal title :
Automatica
Journal title :
Automatica