Title of article :
Identification of ARMA models using intermittent and quantized output observations
Author/Authors :
Marelli، نويسنده , , Damiلn and You، نويسنده , , Keyou and Fu، نويسنده , , Minyue، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
10
From page :
360
To page :
369
Abstract :
This paper studies system identification of ARMA models whose outputs are subject to finite-level quantization and random packet dropouts. Using the maximum likelihood criterion, we propose a recursive identification algorithm, which we show to be strongly consistent and asymptotically normal. We also propose a simple adaptive quantization scheme, which asymptotically achieves the minimum parameter estimation error covariance. The joint effect of finite-level quantization and random packet dropouts on identification accuracy are exactly quantified. The theoretical results are verified by simulations.
Keywords :
Network-based computing systems , ARMA model , packet dropout , Finite-level quantization , Identification methods
Journal title :
Automatica
Serial Year :
2013
Journal title :
Automatica
Record number :
1449003
Link To Document :
بازگشت