Title of article :
Accelerated gradient methods and dual decomposition in distributed model predictive control
Author/Authors :
Thomas M. Giselsson، نويسنده , , Pontus and Doan، نويسنده , , Minh Dang and Keviczky، نويسنده , , Tamلs and Schutter، نويسنده , , Bart De and Rantzer، نويسنده , , Anders، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
We propose a distributed optimization algorithm for mixed L 1 / L 2 -norm optimization based on accelerated gradient methods using dual decomposition. The algorithm achieves convergence rate O ( 1 k 2 ) , where k is the iteration number, which significantly improves the convergence rates of existing duality-based distributed optimization algorithms that achieve O ( 1 k ) . The performance of the developed algorithm is evaluated on randomly generated optimization problems arising in distributed model predictive control (DMPC). The evaluation shows that, when the problem data is sparse and large-scale, our algorithm can outperform current state-of-the-art optimization software CPLEX and MOSEK.
Keywords :
Gradient methods , Predictive control , distributed control
Journal title :
Automatica
Journal title :
Automatica