Title of article :
Scalable reduction of large datasets to interesting subsets
Author/Authors :
Williams، نويسنده , , Gregory Todd and Weaver، نويسنده , , Jesse and Atre، نويسنده , , Medha and Hendler، نويسنده , , James A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
9
From page :
365
To page :
373
Abstract :
With a huge amount of RDF data available on the web, the ability to find and access relevant information is crucial. Traditional approaches to storing, querying, and reasoning fall short when faced with web-scale data. We present a system that combines the computational power of large clusters for enabling large-scale reasoning and data access with an efficient data structure for storing and querying the accessed data on a traditional personal computer or other resource-constrained device. We present results of using this system to load the 2009 Billion Triples Challenge dataset, materialize RDFS inferences, extract an “interesting” subset of the data using a large cluster, and further analyze the extracted data using a personal computer, all in the order of tens of minutes.
Keywords :
scalability , parallel , Inferencing , query , Triplestore , Billion Triples Challenge
Journal title :
Web Semantics Science,Services and Agents on the World Wide Web
Serial Year :
2010
Journal title :
Web Semantics Science,Services and Agents on the World Wide Web
Record number :
1449321
Link To Document :
بازگشت