Title of article :
Observability limits for networked oscillators
Author/Authors :
O’Sullivan-Greene، نويسنده , , Elma and Mareels، نويسنده , , Iven and Kuhlmann، نويسنده , , Levin and Burkitt، نويسنده , , Anthony، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
13
From page :
1087
To page :
1099
Abstract :
Inspired by the neuro-scientific problem of predicting brain dynamics from electroencephalography (EEG) measurements of the brain’s electrical activity, this paper presents limitations on the observability of networked oscillators sensed with quantised measurements. The problem of predicting highly complex brain dynamics sensed with relatively limited amounts of measurement is abstracted to a study of observability in a network of oscillators. It is argued that a low-dimensional quantised measurement is in fact, by itself, an exceptionally poor observer for a large-scale oscillator network, even for the case of a completely connected graph. The main rational is based on (i) an information-theoretic argument based on ideas of entropy in measure preserving maps, (ii) a linear deterministic observability argument, and (iii) a linear stochastic approach using Kalman filtering. For prediction of brain network activity, the findings indicate that the classic EEG signal is just not precise enough to be able to provide reliable prediction and tracking in a clinical setting in view of the complexity of underlying neural dynamics.
Keywords :
Biomedical systems , Brain models , Neural dynamics , Prediction problems , Large-scale systems , Network observability
Journal title :
Automatica
Serial Year :
2014
Journal title :
Automatica
Record number :
1449731
Link To Document :
بازگشت