Title of article :
Magnesium-Ion Modulates the Sensitivity of the Mitochondrial Permeability Transition Pore to Cyclosporine-A and ADP
Author/Authors :
Novgorodov، نويسنده , , S.A. and Gudz، نويسنده , , T.I. and Brierley، نويسنده , , G.P. and Pfeiffer، نويسنده , , D.R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1994
Abstract :
Regulation of the mitochondrial permeability transition pore has been investigated following the release of matrix solutes which normally participate in pore regulation. Under these conditions, neither cyclosporin A nor ADP induces pore closure, as judged by restoration of Δ Ψ, unless Mg2+ is also added. Mg2+ alone is ineffective. In liver mitochondria, the Mg2+ effect is expressed over a 0 to 0.5 mM concentration range with higher concentrations inhibiting repolarization. In heart mitochondria, the inhibitory action of high Mg2+ is not seen and it can be shown that the Mg2+ effect on repolarization increases progressively up to a concentration of 5 mM. In liver mitochondria, when the pore is closed by maximally effective concentrations of Mg2+ plus cyclosporin A or Mg2+ plus ADP, reopening occurs upon the addition of carboxyatractyloside. The latter compound, however, fails to reopen the pore when Mg2+, cyclosporin A, and ADP are present simultaneously. In heart mitochondria, where higher Mg2+ concentrations can be employed, Mg2+ plus cyclosporin A or Mg2+ plus ADP produces pore closure in a carboxyatractyloside insensitive manner. Titration experiments support the adenine nucleotide translocase as the site at which carboxyatractyloside acts to regulate the pore. However, the action of ADP appears to involve a translocase-independent site. In intact mitochondria the action of carboxyatractyloside on pore opening is counteracted by oligomycin, apparently through inhibition of the F1F0 ATP synthase, with a consequent increase in the matrix space ADP/ATP ratio. It is concluded that the permeability transition pore induced by Ca2+ plus Pi is not formed from the adenine nucleotide translocase although the translocase conformation is one of several factors which regulate the pore. The matrix Mg2+ concentration is also one of these factors. Formation of the pore by a Ca2+ and ADP binding protein is one model which is consistent with the present data.
Journal title :
Archives of Biochemistry and Biophysics
Journal title :
Archives of Biochemistry and Biophysics