Title of article :
Totally Multicoloured Cycles
Author/Authors :
Juan José Montellano-Ballesteros، نويسنده , , J.J. and Neumann-Lara، نويسنده , , V.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
4
From page :
239
To page :
242
Abstract :
Let h(p, n) be the minimum integer such that for every edge-colouring of the complete graph of order n which uses exactly h(n,p) colours, there is at least one cycle of length p all whose edges have different colours. We prove that for every n ≤ p ≤ 3 + re(n,p−1)P2 − re(n,p − 1) + 1)2 ≤ h(n,p) ≤ f(n,p) = np − 1 p − 12 + np − 1 + re(n,p − 1)2 − 1) is the residue of n mod (p-1).
Keywords :
Colourings , anti-Ramsey , totally multicoloured cycles
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2000
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1452876
Link To Document :
بازگشت