Title of article :
Interpolation of the Discrete Logarithm in Finite Fields by Boolean Functions
Author/Authors :
Lange، نويسنده , , Tanja and Winterhof، نويسنده , , Arne، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
9
From page :
498
To page :
506
Abstract :
Recently, Shparlinski proved several results on the interpolation of the discrete logarithm in finite prime fields by Boolean functions. In this extended abstract we present extensions to arbitrary finite fields of odd characteristic. More precisely, we sketch the proofs of some complexity lower bounds for Boolean functions representing the least significant bit of the discrete logarithm in a finite field.
Keywords :
Discrete logarithm , finite fields , Boolean functions , Exponential sums , Complexity lower bounds
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2001
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1453052
Link To Document :
بازگشت