Title of article :
On the Super Edge-Magic Deficiency of Graphs
Author/Authors :
Figueroa-Centeno، نويسنده , , R.M. and Ichishima، نويسنده , , R. and Muntaner-Batle، نويسنده , , F.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
16
From page :
299
To page :
314
Abstract :
A (p, q) graph G is edge-magic if there exists a bijective function f: V(G) ∪ E(G) → {1,2,…,p + q} such that f(u) + f(v) + f(uv) = k is a constant, called the valence of f, for any edge uv of G. Moreover, G is said to be super edge-magic if f(V(G)) = {1,2,…,p}. The question studied in this paper is for which graphs is it possible to add a finite number of isolated vertices so that the resulting graph is super edge-magic? If it is possible for a given graph G, then we say that the minimum such number of isolated vertices is the super edge-magic deficiency, μs(G) of G; otherwise we define it to be + ∞.
Keywords :
Super Edge-Magic Labelling , Edge-Magic Labelling
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2002
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1453303
Link To Document :
بازگشت