Title of article :
A result on the total colouring of powers of cycles
Author/Authors :
Campos، نويسنده , , C.N. and de Mello، نويسنده , , C.P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
6
From page :
47
To page :
52
Abstract :
The total chromatic number χT (G) is the least number of colours needed to colour the vertices and edges of a graph G such that no incident or adjacent elements (vertices or edges) receive the same colour. The Total Colouring Conjecture (TCC) states that for every simple graph G, χT (G) ⩽ Δ(G)+2. This work verifies the TCC for powers of cycles C n k , n even and 2 < k < ⌊n/2⌋, showing that there exists and can be polynomially constructed a (Δ(G) + 2)-total colouring for these graphs.
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2004
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1453752
Link To Document :
بازگشت