Title of article :
On minimum clique partition and maximum independent set on unit disk graphs and penny graphs: complexity and approximation
Author/Authors :
Cerioli، نويسنده , , M.R. and Faria، نويسنده , , L. and Ferreira، نويسنده , , T.O. and Protti، نويسنده , , F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
7
From page :
73
To page :
79
Abstract :
A graph G is a unit disk graph if it is the intersection graph of a family of unit disks in the euclidean plane. If the disks do not overlap, then G is also a unit coin graph or penny graph. In this work we establish the complexity of the minimum clique partition problem and the maximum independent set problem for penny graphs, both NP-complete, and present two approximation algorithms for finding clique partitions: a 3-approximation algorithm for unit disk graphs and a 3 2 -approximation algorithm for penny graphs.
Keywords :
unit coin graph , penny graph , minimum clique partition , unit disk graph , approximation algorithms
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2004
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1453758
Link To Document :
بازگشت