Title of article :
Discrete Tomography of Mathematcal Quasicrystals: A Primer
Author/Authors :
Huck، نويسنده , , Christian and Baake، نويسنده , , Michael and Langfeld، نويسنده , , Barbara and Gritzmann، نويسنده , , Peter and Lord، نويسنده , , Katja، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
13
From page :
179
To page :
191
Abstract :
This text is a report on work progress. We introduce the class of cyclotomic model sets (mathematical quasicrystals) Λ ⊂ Z [ ξ n ] , where Z [ ξ n ] is the ring of integers in the nth cyclotomic field Q ( ξ n ) , and discuss the corresponding decomposition, consistency and reconstruction problems of the discrete tomography of these sets. Our solution of the so-called decomposition problem also applies to the case of the square lattice Z 2 = Z [ ξ 4 ] , which corresponds to the classical setting of discrete tomography.
Keywords :
Consistency problem , decomposition problem , cyclomatic model set , Discrete tomography , reconstruction problem
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2005
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1453901
Link To Document :
بازگشت