Title of article :
On isomorphic linear partitions in cubic graphs
Author/Authors :
Fouquet، نويسنده , , J.-L. and Thuillier، نويسنده , , H. and Vanherpe، نويسنده , , J.-M. and Wojda، نويسنده , , A.P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
8
From page :
277
To page :
284
Abstract :
A linear forest is a graph that connected components are chordless paths. A linear partition of a graph G is a partition of its edge set into linear forests and la(G) is the minimum number of linear forests in a linear partition. It is well known that l a ( G ) = 2 when G is a cubic graph and Wormald [Wormald, N., Problem 13, Ars Combinatoria 23 (1987), pp. 332–334] conjectured that if | V ( G ) | ≡ 0 ( mod 4 ) , then it is always possible to find a linear partition in two isomorphic linear forests. We give here some new results concerning this conjecture.
Keywords :
cubic graphs , linear-arboricity
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2006
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1454315
Link To Document :
بازگشت