Title of article :
Edge-colorings of cubic graphs with elements of point-transitive Steiner triple systems
Author/Authors :
Kr?lʹ، نويسنده , , Daniel and M??ajov?، نويسنده , , Edita and P?r، نويسنده , , Attila and Sereni، نويسنده , , Jean-Sébastien، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
5
From page :
23
To page :
27
Abstract :
A cubic graph G is S-edge-colorable for a Steiner triple system S if its edges can be colored with points of S in such a way that the points assigned to three edges sharing a vertex form a triple in S. We show that a cubic graph is S-edge-colorable for every non-trivial affine Steiner triple system S unless it contains a well-defined obstacle called a bipartite end. In addition, we show that all cubic graphs are S-edge-colorable for every non-projective non-affine point-transitive Steiner triple system S.
Keywords :
Steiner triple systems , edge-colorings , cubic graphs
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2007
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1454654
Link To Document :
بازگشت