Title of article :
Strong oriented chromatic number of planar graphs without cycles of specific lengths
Author/Authors :
Montassier، نويسنده , , Mickaël and Ochem، نويسنده , , Pascal and Pinlou، نويسنده , , Alexandre، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
6
From page :
27
To page :
32
Abstract :
A strong oriented k-coloring of an oriented graph G is a homomorphism ϕ from G to H having k vertices labelled by the k elements of an abelian additive group M, such that for any pairs of arcs u v → and z t → of G, we have ϕ ( v ) − ϕ ( u ) ≠ − ( ϕ ( t ) − ϕ ( z ) ) . The strong oriented chromatic number χ s ( G ) is the smallest k such that G admits a strong oriented k-coloring. In this paper, we consider the following problem: Let i ⩾ 4 be an integer. Let G be an oriented planar graph without cycles of lengths 4 to i. What is the strong oriented chromatic number of G?
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2008
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1454805
Link To Document :
بازگشت