Title of article :
Hamilton cycles in 4-connected troidal triangulations
Author/Authors :
Kawarabayashi، نويسنده , , Ken-ichi and Ozeki، نويسنده , , Kenta، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
6
From page :
493
To page :
498
Abstract :
Grünbaum [B. Grünbaum, Polytopes, graphs, and complexes, Bull. Amer. Math. Soc. 76 (1970) 1131–1201] and independently Nash-Williams [C.St.J.A. Nash-Williams, Unexplored and semi-explored territories in graph theory, in “New directions in the theory of graphs” 149–186, Academic Press, New York, 1973] conjectured that every 4-connected graphs on the torus has a hamilton cycle. In this paper, we show that the conjecture is true for triangulations of the torus.
Keywords :
Hamilton cycles , graphs on the torus , Tutte paths , triangulation
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2011
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1455876
Link To Document :
بازگشت