Title of article :
Linear number of diagonal flips in triangulations on surfaces
Author/Authors :
Mori، نويسنده , , Ryuichi and Nakamoto، نويسنده , , Atsuhiro، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
6
From page :
669
To page :
674
Abstract :
A diagonal flip in a triangulation G on a surface is a transformation of G to replace a diagonal e in the quadrilateral region formed by two faces sharing e with another diagonal. If this operation breaks the simpleness of graphs, then we do not apply it. We shall prove that for any surface F 2 , there exists a natural number N ( F 2 ) such that if n ⩾ N ( F 2 ) , then any two n-vertex triangulations on F 2 can be transformed into each other by O ( n ) diagonal flips, up to homeomorphism.
Keywords :
triangulation , bouquet , surface , Diagonal flip
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2011
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1455922
Link To Document :
بازگشت