Title of article :
Product sets cannot contain long arithmetic progressions
Author/Authors :
Zhelezov، نويسنده , , Dmitry، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
2
From page :
169
To page :
170
Abstract :
Let B be a set of real numbers of size n. We prove that the length of the longest arithmetic progression contained in the product set B . B = { b i b j | b i , b j ∈ B } cannot be greater than O ( n 1 + 1 / log log n ) an arithmetic progression of length Ω ( n log n ) , so the obtained upper bound is close to the optimal.
Keywords :
product sets , arithmetic progressions , Convex sets
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2013
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1456328
Link To Document :
بازگشت