Title of article :
A new intersection theorem and its applications to bounding the chromatic numbers of spaces
Author/Authors :
Ponomarenko، نويسنده , , Ekaterina I. and Raigorodskii، نويسنده , , Andrei M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
5
From page :
241
To page :
245
Abstract :
In 1981 P. Frankl and R.M. Wilson showed that if H = ( V , E ) is a k-uniform hypergraph on n vertices and for any F 1 , F 2 ∈ E one has | F 1 ∩ F 2 | ≠ l with q = k − l being a prime power, then for 2 l < k , | E | ⩽ ∑ i = 0 q − 1 ( n i ) , and for 2 l ⩾ k , | E | ⩽ ( n d ) ( k d ) ∑ i = 0 q − 1 ( n − d i ) , where d = k − 2 q + 1 = 2 l − k + 1 . In this note, we improve the second inequality and find applications to coloring real and rational spaces.
Keywords :
Hypergraph , linear algebra method , intersection theorems , the chromatic numbers of metric spaces
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2013
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1456348
Link To Document :
بازگشت