Title of article :
Chromatic Sums for Colorings Avoiding Monochromatic Subgraphs
Author/Authors :
Kubicka، نويسنده , , Ewa and Kubicki، نويسنده , , Grzegorz and McKeon، نويسنده , , Kathleen A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
8
From page :
247
To page :
254
Abstract :
Given graphs G and H, a vertex coloring c : V ( G ) → N is an H-free coloring of G if no color class contains a subgraph isomorphic to H. The H-free chromatic number of G, χ ( H , G ) , is the minimum number of colors in an H-free coloring of G. The H-free chromatic sum of G , Σ ( H , G ) , is the minimum value achieved by summing the vertex colors of each H-free coloring of G. We provide a general bound for Σ ( H , G ) , discuss the computational complexity of finding this parameter for different choices of H, and prove an exact formulas for some graphs G. For every integer k and for every graph H, we construct families of graphs, G k with the property that k more colors than χ ( H , G ) are required to realize Σ ( H , G ) for H-free colorings. More complexity results and constructions of graphs requiring extra colors are given for planar and outerplanar graphs.
Keywords :
chromatic number , avoiding subgraphs , sum of colors
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2013
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1456350
Link To Document :
بازگشت