Title of article :
Null and non–rainbow colorings of maximal planar graphs
Author/Authors :
Montejano، نويسنده , , Amanda and Arocha، نويسنده , , Jorge L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
6
From page :
121
To page :
126
Abstract :
For maximal planar graphs of order n ⩾ 4 , we prove that a vertex–coloring containing no rainbow faces uses at most ⌊ 2 n − 1 3 ⌋ colors, and this is best possible. The main ingredients in the proof are classical homological tools. By considering graphs as topological spaces, we introduce the notion of a null coloring, and prove that for any graph G a maximal null coloring f is such that the quotient graph G / f is a forest.
Keywords :
anti-Ramsey theory , non-rainbow colorings , sphere triangulations
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2013
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1456423
Link To Document :
بازگشت