Title of article :
Elastic beam finite element with an arbitrary number of transverse cracks
Author/Authors :
M. Skrinar، نويسنده , , Matja?، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
This paper formulates the finite element of a beam with an arbitrary number of transverse cracks. The derivations are based on a simplified computational model, where each crack is replaced by a corresponding linear rotational spring, connecting two adjacent elastic parts. The stiffness and geometrical stiffness matrices thus take into account the effect of flexural bending deformation caused by the presence of the cracks.
pressions for calculating the coefficients of stiffness and geometrical stiffness matrices, as well as the load vector of the element, are presented in closed forms.
the corresponding interpolation functions were implemented in the derivations, transverse displacements within the finite element can also be obtained.
the fact that the number of parameters describing the cracked beamʹs structure is thus reduced to its minimum, it can be expected that this element could be efficiently implemented, not only in static and stability analysis, but also in inverse identification of cracks in beam-like structures.
Keywords :
Simplified model , stiffness matrix , Geometrical stiffness matrix , Beams with transverse crack , Transverse displacements , Finite element model
Journal title :
Finite Elements in Analysis and Design
Journal title :
Finite Elements in Analysis and Design