Title of article :
Pulverized coal flame structures at elevated pressures. Part 1. Detailed operating conditions
Author/Authors :
Liu، نويسنده , , Gui-su and Niksa، نويسنده , , Stephen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
The tests and simulations in this study characterize the chemical structure of pressurized pulverized coal flames, particularly (1) how the O2 in simulated near-burner flame zones is apportioned among the various fuel components; and (2) the burner operating conditions and mechanisms that most strongly affect flame structure. CFD simulations resolved the structures of flames of a subbituminous and two hv bituminous coals for stoichiometric ratios (SR) from 0 to 1.8 for pressures from 1.0 to 3.0 MPa. The structures of all flames were largely determined by the accumulation of particles in the turbulent boundary layer on the flow tube wall. Gaseous fuel compounds always ignited first on the wall at the burner inlet, and this flame propagated toward the flow axis to form a 2D parabolic flame surface. Within the core, residual gaseous fuels, soot, and char may have eventually reached their ignition threshold and burned in a premixed mode. Residual CO, H2, and char burned in the near-wall region after the volatiles flame had propagated deeper into the core.
r or not the flame closed on the centerline was mainly determined by pressure and SR. Inlet conditions that formed closed flames at a lower test pressure eventually sustained open flames at progressively higher pressures. The impact of decreasing SR was qualitatively similar, due to the lower heat release rates for progressively lower SR. As the pressure is increased, flame ignition and, by association, flame stability will become more problematic due to the greater thermal capacitance of air streams at progressively higher pressures.
Keywords :
Burner simulations , Flame structure , CFD , Pressure , Pulverized coal