Title of article :
Fault detection and identification of nonlinear processes based on kernel PCA
Author/Authors :
Choi، نويسنده , , Sang Wook and Lee، نويسنده , , Changkyu and Lee، نويسنده , , Jong-Min and Park، نويسنده , , Jin Hyun and Lee، نويسنده , , In-Beum، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2005
Abstract :
A new fault detection and identification method based on kernel principal component analysis (PCA) is described. In the past, numerous PCA-based statistical process monitoring methods have been developed and applied to various chemical processes. However, these previous methods assume that the monitored process is linear, whereas most of the chemical reactions in chemical processes are nonlinear. For such nonlinear systems, PCA-based monitoring has proved inefficient and problematic, prompting the development of several nonlinear PCA methods. In this paper, we propose a new nonlinear PCA-based method that uses kernel functions, and we compare the proposed method with previous methods. A unified fault detection index is developed based on the energy approximation concept. In particular, a new approach to fault identification, which is a challenging problem in nonlinear PCA, is formulated based on a robust reconstruction error calculation. The proposed monitoring method was applied to two simple nonlinear processes and the simulated continuous stirred tank reactor (CSTR) process. The monitoring results confirm that the proposed methodology affords credible fault detection and identification.
Keywords :
Data reconstruction , Kernel principal component analysis , Monitoring statistics , fault detection and isolation
Journal title :
Chemometrics and Intelligent Laboratory Systems
Journal title :
Chemometrics and Intelligent Laboratory Systems