Title of article :
Using principal component analysis to find the best calibration settings for simultaneous spectroscopic determination of several gasoline properties
Author/Authors :
Honorato، نويسنده , , Fernanda Araْjo and Neto، نويسنده , , Benيcio de Barros and Pimentel، نويسنده , , Maria Fernanda and Stragevitch، نويسنده , , Luiz and Galvمo، نويسنده , , Roberto Kawakami Harrop، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
4
From page :
3706
To page :
3709
Abstract :
A set of 160 gasoline samples was collected from commercial stations in five Brazilian states and analyzed by ASTM methods for 13 properties. Principal component analysis (PCA) was employed to investigate the effect of infrared spectral region (near or middle), calibration algorithm (principal component regression, partial least squares or multiple linear regression) and pre-processing procedure (derivative, smoothing and variable selection) in the resulting root-mean-square error of prediction (RMSEP). The PCA score plots revealed that all properties can be satisfactorily predicted by multiple linear regression in the 1600–2500 nm region, with variables selected by a genetic algorithm, using any pre-processing technique.
Keywords :
Principal component analysis , Gasoline , Infrared
Journal title :
Fuel
Serial Year :
2008
Journal title :
Fuel
Record number :
1461524
Link To Document :
بازگشت