Title of article :
Development and validation of LC–MS/MS assays for the quantification of bendamustine and its metabolites in human plasma and urine
Author/Authors :
Tom M. A. R. Dubbelman، نويسنده , , A.C. and Tibben، نويسنده , , M. T. Rosing، نويسنده , , H. and Gebretensae، نويسنده , , A. and Nan، نويسنده , , L. and Gorman، نويسنده , , S.H. and Robertson Jr.، نويسنده , , Marlise P. and Schellens، نويسنده , , J.H.M. and Beijnen، نويسنده , , J.H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
A sensitive liquid chromatography tandem mass spectrometry (LC–MS/MS) assay is described for the quantification of the anti-cancer agent bendamustine and its phase I metabolites γ-hydroxy-bendamustine (M3) and N-des-methylbendamustine (M4) and for its product of two-fold hydrolysis, dihydroxy-bendamustine (HP2), in human plasma and urine.
ost alkylating nitrogen mustards, bendamustine is prone to chemical hydrolysis in aqueous solution. To minimize degradation of bendamustine, urine samples were stabilized by a 100-fold dilution with human plasma and then processed identically to plasma samples. Sample aliquots of 200 μL were mixed with an internal standard solution and acidified before separation of the analytes from the biomatrix with solid phase extraction. Dried and reconstituted extracts were injected on a Synergi Hydro RP column for the analysis of bendamustine, M3 and M4 or a Synergi Polar RP column for the analysis of HP2. Gradient elution was applied using 5 mM ammonium formate with 0.1% formic acid in water and methanol as mobile phases. Analytes were ionized using an electrospray ionisation source in positive mode and detected with a triple quadrupole mass spectrometer.
antifiable range for bendamustine, M3 and M4 was 0.5–500 ng/mL in plasma and 0.5–50 μg/mL in urine, and that for HP2 was 1–500 ng/mL in plasma and 0.1–50 μg/mL in urine. The assays were accurate and precise, with inter-assay and intra-assay accuracies within ±20% of nominal and CV values below 20% at the lower limit of quantification and within ±15% of nominal and below 15% at the other concentration levels tested. These methods were successfully applied to evaluate the pharmacokinetic profile of bendamustine and its metabolites in cancer patients treated with bendamustine.
Keywords :
Bendamustine , Alkylating agent , stability , LC–MS/MS , metabolites
Journal title :
Journal of Chromatography B
Journal title :
Journal of Chromatography B