Title of article :
A Cartesian Grid Finite-Volume Method for the Advection-Diffusion Equation in Irregular Geometries
Author/Authors :
Calhoun، نويسنده , , Donna and LeVeque، نويسنده , , Randall J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
We present a fully conservative, high-resolution, finite volume algorithm for advection-diffusion equations in irregular geometries. The algorithm uses a Cartesian grid in which some cells are cut by the embedded boundary. A novel feature is the use of a “capacity function” to model the fact that some cells are only partially available to the fluid. The advection portion then uses the explicit wave-propagation methods implemented in CLAWPACK, and is stable for Courant numbers up to 1. Diffusion is modelled with an implicit finite-volume algorithm. Results are shown for several geometries. Convergence is verified and the 1-norm order of accuracy is found to between 1.2 and 2 depending on the geometry and Peclet number. Software is available on the web.
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics