Title of article :
Separable and Nonseparable Multiwavelets in Multiple Dimensions
Author/Authors :
Tymczak، نويسنده , , C.J. and Niklasson، نويسنده , , Anders M.N. and Rِder، نويسنده , , Heinrich، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
35
From page :
363
To page :
397
Abstract :
We report on a method of constructing multidimensional biorthogonal interpolating multiwavelets. The approach is based upon polynomial interpolation in Rd (C. de Boor and A. Ron, Math. Comput.58, 198 (1997)) and an extension of the lifting scheme (J. Kovačević and W. Sweldens, IEEE Trans. Image Process.9, No. 3, 480 (2000)). The constructed wavelets have compact support, are nearly isotropic, and retain partial scale invariance leading to a fast and efficient multidimensional wavelet transform. We demonstrate an implementation for these wavelets of variable polynomial order up to four dimensions. Finally, we show that these wavelets have a much sparser representation of discontinuous functions as compared to tensor product wavelets, which allows for a more compact and efficient representation.
Journal title :
Journal of Computational Physics
Serial Year :
2002
Journal title :
Journal of Computational Physics
Record number :
1476852
Link To Document :
بازگشت