Title of article :
A Second-Order-Accurate Symmetric Discretization of the Poisson Equation on Irregular Domains
Author/Authors :
Gibou، نويسنده , , Frederic and Fedkiw، نويسنده , , Ronald P. and Cheng، نويسنده , , Li-Tien and Kang، نويسنده , , Myungjoo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
23
From page :
205
To page :
227
Abstract :
In this paper, we consider the variable coefficient Poisson equation with Dirichlet boundary conditions on an irregular domain and show that one can obtain second-order accuracy with a rather simple discretization. Moreover, since our discretization matrix is symmetric, it can be inverted rather quickly as opposed to the more complicated nonsymmetric discretization matrices found in other second-order-accurate discretizations of this problem. Multidimensional computational results are presented to demonstrate the second-order accuracy of this numerical method. In addition, we use our approach to formulate a second-order-accurate symmetric implicit time discretization of the heat equation on irregular domains. Then we briefly consider Stefan problems.
Journal title :
Journal of Computational Physics
Serial Year :
2002
Journal title :
Journal of Computational Physics
Record number :
1476895
Link To Document :
بازگشت