Title of article :
Finite Difference Schemes for Incompressible Flow Based on Local Pressure Boundary Conditions
Author/Authors :
Johnston، نويسنده , , Hans and Liu، نويسنده , , Jian-Guo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
35
From page :
120
To page :
154
Abstract :
In this paper we discuss the derivation and use of local pressure boundary conditions for finite difference schemes for the unsteady incompressible Navier–Stokes equations in the velocity–pressure formulation. Their use is especially well suited for the computation of moderate to large Reynolds number flows. We explore the similarities between the implementation and use of local pressure boundary conditions and local vorticity boundary conditions in the design of numerical schemes for incompressible flow in 2D. In their respective formulations, when these local numerical boundary conditions are coupled with a fully explicit convectively stable time stepping procedure, the resulting methods are simple to implement and highly efficient. Unlike the vorticity formulation, the use of the local pressure boundary condition approach is readily applicable to 3D flows. The simplicity of the local pressure boundary condition approach and its easy adaptation to more general flow settings make the resulting scheme an attractive alternative to the more popular methods for solving the Navier–Stokes equations in the velocity–pressure formulation. We present numerical results of a second-order finite difference scheme on a nonstaggered grid using local pressure boundary conditions. Stability and accuracy of the scheme applied to Stokes flow is demonstrated using normal mode analysis. Also described is the extension of the method to variable density flows.
Journal title :
Journal of Computational Physics
Serial Year :
2002
Journal title :
Journal of Computational Physics
Record number :
1477048
Link To Document :
بازگشت