Title of article :
Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation
Author/Authors :
Bao، نويسنده , , Weizhu and Jaksch، نويسنده , , Dieter and Markowich، نويسنده , , Peter A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
25
From page :
318
To page :
342
Abstract :
We study the numerical solution of the time-dependent Gross–Pitaevskii equation (GPE) describing a Bose–Einstein condensate (BEC) at zero or very low temperature. In preparation for the numerics we scale the 3d Gross–Pitaevskii equation and obtain a four-parameter model. Identifying ‘extreme parameter regimes’, the model is accessible to analytical perturbation theory, which justifies formal procedures well known in the physical literature: reduction to 2d and 1d GPEs, approximation of ground state solutions of the GPE and geometrical optics approximations. Then we use a time-splitting spectral method to discretize the time-dependent GPE. Again, perturbation theory is used to understand the discretization scheme and to choose the spatial/temporal grid in dependence of the perturbation parameter. Extensive numerical examples in 1d, 2d and 3d for weak/strong interactions, defocusing/focusing nonlinearity, and zero/nonzero initial phase data are presented to demonstrate the power of the numerical method and to discuss the physics of Bose–Einstein condensation.
Keywords :
Gross–Pitaevskii equation , Time-splitting spectral method , Bose–Einstein condensation (BEC) , Approximate ground state solution , Defocusing/focusing nonlinearity
Journal title :
Journal of Computational Physics
Serial Year :
2003
Journal title :
Journal of Computational Physics
Record number :
1477409
Link To Document :
بازگشت