Title of article :
Locally divergence-free discontinuous Galerkin methods for the Maxwell equations
Author/Authors :
Cockburn، نويسنده , , Bernardo and Li، نويسنده , , Fengyan and Shu، نويسنده , , Chi-Wang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
23
From page :
588
To page :
610
Abstract :
In this paper, we develop the locally divergence-free discontinuous Galerkin method for numerically solving the Maxwell equations. The distinctive feature of the method is the use of approximate solutions that are exactly divergence-free inside each element. As a consequence, this method has a smaller computational cost than that of the discontinuous Galerkin method with standard piecewise polynomial spaces. We show that, in spite of this fact, it produces approximations of the same accuracy. We also show that this method is more efficient than the discontinuous Galerkin method using globally divergence-free piecewise polynomial bases. Finally, a post-processing technique is used to recover (2k+1)th order of accuracy when piecewise polynomials of degree k are used.
Keywords :
Discontinuous Galerkin Method , Divergence-free solutions , Maxwell equations
Journal title :
Journal of Computational Physics
Serial Year :
2004
Journal title :
Journal of Computational Physics
Record number :
1477828
Link To Document :
بازگشت