Title of article :
The Gautschi time stepping scheme for edge finite element discretizations of the Maxwell equations
Author/Authors :
Botchev، نويسنده , , M.A. and Harutyunyan، نويسنده , , D. and van der Vegt، نويسنده , , J.J.W.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
33
From page :
654
To page :
686
Abstract :
For the time integration of edge finite element discretizations of the three-dimensional Maxwell equations, we consider the Gautschi cosine scheme where the action of the matrix function is approximated by a Krylov subspace method. First, for the space-discretized edge finite element Maxwell equations, the dispersion error of this scheme is analyzed in detail and compared to that of two conventional schemes. Second, we show that the scheme can be implemented in such a way that a higher accuracy can be achieved within less computational time (as compared to other implicit schemes). We also analyzed the error made in the Krylov subspace matrix function evaluations. Although the new scheme is unconditionally stable, it is explicit in structure: as an explicit scheme, it requires only the solution of linear systems with the mass matrix.
Keywords :
Krylov subspace , Arnoldi process , Maxwell equations , Gautschi cosine scheme , dispersion analysis , Edge elements , Staggered leap frog scheme
Journal title :
Journal of Computational Physics
Serial Year :
2006
Journal title :
Journal of Computational Physics
Record number :
1479193
Link To Document :
بازگشت