Title of article :
High-order numerical method for the nonlinear Helmholtz equation with material discontinuities in one space dimension
Author/Authors :
Baruch، نويسنده , , G. and Fibich، نويسنده , , G. and Tsynkov، نويسنده , , S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
31
From page :
820
To page :
850
Abstract :
The nonlinear Helmholtz equation (NLH) models the propagation of electromagnetic waves in Kerr media, and describes a range of important phenomena in nonlinear optics and in other areas. In our previous work, we developed a fourth order method for its numerical solution that involved an iterative solver based on freezing the nonlinearity. The method enabled a direct simulation of nonlinear self-focusing in the nonparaxial regime, and a quantitative prediction of backscattering. However, our simulations showed that there is a threshold value for the magnitude of the nonlinearity, above which the iterations diverge. s study, we numerically solve the one-dimensional NLH using a Newton-type nonlinear solver. Because the Kerr nonlinearity contains absolute values of the field, the NLH has to be recast as a system of two real equations in order to apply Newton’s method. Our numerical simulations show that Newton’s method converges rapidly and, in contradistinction with the iterations based on freezing the nonlinearity, enables computations for very high levels of nonlinearity. ition, we introduce a novel compact finite-volume fourth order discretization for the NLH with material discontinuities. Our computations corroborate the design fourth order convergence of the method. e-dimensional results of the current paper create a foundation for the analysis of multidimensional problems in the future.
Keywords :
Inhomogeneous medium , Compact scheme , Finite volume discretization , High-order method , Two-way ABCs , Newton’s method , Complex valued solutions , Frechét differentiability , Kerr nonlinearity , Nonlinear optics , Artificial boundary conditions (ABCs) , Traveling waves , Discontinuous coefficients
Journal title :
Journal of Computational Physics
Serial Year :
2007
Journal title :
Journal of Computational Physics
Record number :
1480345
Link To Document :
بازگشت