Title of article :
A quasi-positive family of continuous Darcy-flux finite-volume schemes with full pressure support
Author/Authors :
Edwards، نويسنده , , Michael G. and Zheng، نويسنده , , Hongwen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
32
From page :
9333
To page :
9364
Abstract :
A new family of flux-continuous, locally conservative, finite-volume schemes is presented for solving the general tensor pressure equation of subsurface flow in porous media. The new schemes have full pressure continuity imposed across control-volume faces. Previous families of flux-continuous schemes are point-wise continuous in pressure and flux. pplying the earlier point-wise flux-continuous schemes to strongly anisotropic full-tensor fields their failure to satisfy a maximum principle (as with other FEM and finite-volume methods) can result in loss of local stability for high anisotropy ratios which can cause strong spurious oscillations in the numerical pressure solution. atrix analysis reveals the upper limits for guaranteeing a maximum principle for general 9-point schemes and aids in the design of schemes that minimize the occurrence of spurious oscillations in the discrete pressure field. ll pressure continuity schemes are shown to possess a larger range of flux-continuous schemes, than the previous point-wise counter parts. For strongly anisotropic full-tensor cases it is shown that the full quadrature range possessed by the new schemes permits these schemes to exploit quadrature points (previously out of range) that are shown to minimize spurious oscillations in discrete pressure solutions. The new formulation leads to a more robust quasi-positive family of flux-continuous schemes applicable to general discontinuous full-tensor fields.
Keywords :
Maximum principle , M-matrix , Anisotropy and pressure equation , Family of flux-continuous schemes , finite-volume , Full pressure continuity , Positivity , Control-volume distributed (CVD) , Multi-point flux approximation (MPFA) , Locally conservative , Monotonicity
Journal title :
Journal of Computational Physics
Serial Year :
2008
Journal title :
Journal of Computational Physics
Record number :
1481033
Link To Document :
بازگشت