Title of article :
Finite volume evolution Galerkin method for hyperbolic conservation laws with spatially varying flux functions
Author/Authors :
Arun، نويسنده , , K.R. and Kraft، نويسنده , , M. and Luk??ov?-Medvid’ov?، نويسنده , , M. and Prasad، نويسنده , , S. Baskar and Phoolan Prasad ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukáčová-Medvid’ová, J. Saibertov’a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533– 562; M. Lukáčová-Medvid’ová, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1–30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor–corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.
Keywords :
heterogeneous media , Acoustic waves , Finite Volume Methods , Bicharacteristics , Evolution Galerkin scheme , wave equation
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics