Title of article :
A central Rankine–Hugoniot solver for hyperbolic conservation laws
Author/Authors :
Jaisankar، نويسنده , , S. and Raghurama Rao، نويسنده , , S.V.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
A numerical method in which the Rankine–Hugoniot condition is enforced at the discrete level is developed. The simple format of central discretization in a finite volume method is used together with the jump condition to develop a simple and yet accurate numerical method free of Riemann solvers and complicated flux splittings. The steady discontinuities are captured accurately by this numerical method. The basic idea is to fix the coefficient of numerical dissipation based on the Rankine–Hugoniot (jump) condition. Several numerical examples for scalar and vector hyperbolic conservation laws representing the inviscid Burgers equation, the Euler equations of gas dynamics, shallow water equations and ideal MHD equations in one and two dimensions are presented which demonstrate the efficiency and accuracy of this numerical method in capturing the flow features.
Keywords :
Rankine–Hugoniot jump condition , Central scheme , Low numerical diffusion , Exact capturing of shocks and contact discontinuities
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics