Title of article :
Compact finite difference method for the fractional diffusion equation
Author/Authors :
Cui، نويسنده , , Mingrong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
13
From page :
7792
To page :
7804
Abstract :
High-order compact finite difference scheme for solving one-dimensional fractional diffusion equation is considered in this paper. After approximating the second-order derivative with respect to space by the compact finite difference, we use the Grünwald–Letnikov discretization of the Riemann–Liouville derivative to obtain a fully discrete implicit scheme. We analyze the local truncation error and discuss the stability using the Fourier method, then we prove that the compact finite difference scheme converges with the spatial accuracy of fourth order using matrix analysis. Numerical results are provided to verify the accuracy and efficiency of the proposed algorithm.
Keywords :
Fourier analysis , Convergence , Finite difference , Padé approximant , Compact scheme , stability , Fractional diffusion equation
Journal title :
Journal of Computational Physics
Serial Year :
2009
Journal title :
Journal of Computational Physics
Record number :
1481847
Link To Document :
بازگشت