Title of article :
A parallel additive Schwarz preconditioned Jacobi–Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation
Author/Authors :
Hwang، نويسنده , , Feng-Nan and Wei، نويسنده , , Zih-Hao and Huang، نويسنده , , Tsung-Ming and Wang، نويسنده , , Weichung، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
16
From page :
2932
To page :
2947
Abstract :
We develop a parallel Jacobi–Davidson approach for finding a partial set of eigenpairs of large sparse polynomial eigenvalue problems with application in quantum dot simulation. A Jacobi–Davidson eigenvalue solver is implemented based on the Portable, Extensible Toolkit for Scientific Computation (PETSc). The eigensolver thus inherits PETSc’s efficient and various parallel operations, linear solvers, preconditioning schemes, and easy usages. The parallel eigenvalue solver is then used to solve higher degree polynomial eigenvalue problems arising in numerical simulations of three dimensional quantum dots governed by Schrödinger’s equations. We find that the parallel restricted additive Schwarz preconditioner in conjunction with a parallel Krylov subspace method (e.g. GMRES) can solve the correction equations, the most costly step in the Jacobi–Davidson algorithm, very efficiently in parallel. Besides, the overall performance is quite satisfactory. We have observed near perfect superlinear speedup by using up to 320 processors. The parallel eigensolver can find all target interior eigenpairs of a quintic polynomial eigenvalue problem with more than 32 million variables within 12 minutes by using 272 Intel 3.0 GHz processors.
Keywords :
Parallel computing , Restricted additive Schwarz preconditioning , Jacobi–Davidson methods , Schr?dinger’s equation , Polynomial eigenvalue problems , Quantum dot simulation
Journal title :
Journal of Computational Physics
Serial Year :
2010
Journal title :
Journal of Computational Physics
Record number :
1482239
Link To Document :
بازگشت