Title of article :
ReALE: A reconnection-based arbitrary-Lagrangian–Eulerian method
Author/Authors :
Loubère، نويسنده , , Raphaël and Maire، نويسنده , , Pierre-Henri and Shashkov، نويسنده , , Mikhail and Breil، نويسنده , , Jérôme and Galera، نويسنده , , Stéphane، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
We present a new reconnection-based arbitrary-Lagrangian–Eulerian (ALE) method. The main elements in a standard ALE simulation are an explicit Lagrangian phase in which the solution and grid are updated, a rezoning phase in which a new grid is defined, and a remapping phase in which the Lagrangian solution is transferred (conservatively interpolated) onto the new grid. In standard ALE methods the new mesh from the rezone phase is obtained by moving grid nodes without changing connectivity of the mesh. Such rezone strategy has its limitation due to the fixed topology of the mesh. In our new method we allow connectivity of the mesh to change in rezone phase, which leads to general polygonal mesh and allows to follow Lagrangian features of the mesh much better than for standard ALE methods. Rezone strategy with reconnection is based on using Voronoi tessellation. We demonstrate performance of our new method on series of numerical examples and show it superiority in comparison with standard ALE methods without reconnection.
Keywords :
Lagrangian hydrodynamics , Cell-centered scheme , compressible flow , Arbitrary-Lagrangian–Eulerian , Voronoi mesh , Mesh reconnection , Multi-dimensional unstructured polygonal mesh , Staggered scheme
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics