Title of article :
ADI spectral collocation methods for parabolic problems
Author/Authors :
Bialecki، نويسنده , , B. and de Frutos، نويسنده , , J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
12
From page :
5182
To page :
5193
Abstract :
We discuss the Crank–Nicolson and Laplace modified alternating direction implicit Legendre and Chebyshev spectral collocation methods for a linear, variable coefficient, parabolic initial-boundary value problem on a rectangular domain with the solution subject to non-zero Dirichlet boundary conditions. The discretization of the problems by the above methods yields matrices which possess banded structures. This along with the use of fast Fourier transforms makes the cost of one step of each of the Chebyshev spectral collocation methods proportional, except for a logarithmic term, to the number of the unknowns. We present the convergence analysis for the Legendre spectral collocation methods in the special case of the heat equation. Using numerical tests, we demonstrate the second order accuracy in time of the Chebyshev spectral collocation methods for general linear variable coefficient parabolic problems.
Keywords :
Legendre and Chebyshev polynomials , ADI , Parabolic initial-boundary value problems , Spectral collocation , Laplace modified , Crank–Nicolson
Journal title :
Journal of Computational Physics
Serial Year :
2010
Journal title :
Journal of Computational Physics
Record number :
1482431
Link To Document :
بازگشت