Title of article :
High-order finite-volume methods for the shallow-water equations on the sphere
Author/Authors :
Ullrich، نويسنده , , Paul A. and Jablonowski، نويسنده , , Christiane and van Leer، نويسنده , , Bram، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
This paper presents a third-order and fourth-order finite-volume method for solving the shallow-water equations on a non-orthogonal equiangular cubed-sphere grid. Such a grid is built upon an inflated cube placed inside a sphere and provides an almost uniform grid point distribution. The numerical schemes are based on a high-order variant of the Monotone Upstream-centered Schemes for Conservation Laws (MUSCL) pioneered by van Leer. In each cell the reconstructed left and right states are either obtained via a dimension-split piecewise-parabolic method or a piecewise-cubic reconstruction. The reconstructed states then serve as input to an approximate Riemann solver that determines the numerical fluxes at two Gaussian quadrature points along the cell boundary. The use of multiple quadrature points renders the resulting flux high-order. Three types of approximate Riemann solvers are compared, including the widely used solver of Rusanov, the solver of Roe and the new AUSM+-up solver of Liou that has been designed for low-Mach number flows. Spatial discretizations are paired with either a third-order or fourth-order total-variation-diminishing Runge–Kutta timestepping scheme to match the order of the spatial discretization. The numerical schemes are evaluated with several standard shallow-water test cases that emphasize accuracy and conservation properties. These tests show that the AUSM+-up flux provides the best overall accuracy, followed closely by the Roe solver. The Rusanov flux, with its simplicity, provides significantly larger errors by comparison. A brief discussion on extending the method to arbitrary order-of-accuracy is included.
Keywords :
High-order , finite-volume methods , Shallow-water equations , Riemann Solvers , Cubed-sphere , Well-balanced schemes
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics