Title of article :
A least-squares/finite element method for the numerical solution of the Navier–Stokes-Cahn–Hilliard system modeling the motion of the contact line
Author/Authors :
He، نويسنده , , Qiaolin and Glowinski، نويسنده , , Roland and Wang، نويسنده , , Xiao-Ping، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
In this article we discuss the numerical solution of the Navier–Stokes-Cahn–Hilliard system modeling the motion of the contact line separating two immiscible incompressible viscous fluids near a solid wall. The method we employ combines a finite element space approximation with a time discretization by operator-splitting. To solve the Cahn–Hilliard part of the problem, we use a least-squares/conjugate gradient method. We also show that the scheme has the total energy decaying in time property under certain conditions. Our numerical experiments indicate that the method discussed here is accurate, stable and efficient.
Keywords :
Navier–Stokes , Cahn–Hilliard , Operator-splitting , least squares , Conjugate Gradient , contact line
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics