Title of article :
FaIMS: A fast algorithm for the inverse medium problem with multiple frequencies and multiple sources for the scalar Helmholtz equation
Author/Authors :
Chaillat، نويسنده , , Stéphanie and Biros، نويسنده , , George، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
19
From page :
4403
To page :
4421
Abstract :
We propose an algorithm to compute an approximate singular value decomposition (SVD) of least-squares operators related to linearized inverse medium problems with multiple events. Such factorizations can be used to accelerate matrix-vector multiplications and to precondition iterative solvers. cribe the algorithm in the context of an inverse scattering problem for the low-frequency time-harmonic wave equation with broadband and multi-point illumination. This model finds many applications in science and engineering (e.g., seismic imaging, subsurface imaging, impedance tomography, non-destructive evaluation, and diffuse optical tomography). sider small perturbations of the background medium and, by invoking the Born approximation, we obtain a linear least-squares problem. The scheme we describe in this paper constructs an approximate SVD of the Born operator (the operator in the linearized least-squares problem). The main feature of the method is that it can accelerate the application of the Born operator to a vector. is the number of illumination frequencies, Ns the number of illumination locations, Nd the number of detectors, and N the discretization size of the medium perturbation, a dense singular value decomposition of the Born operator requires O ( min ( N s N ω N d , N ) ] 2 × max ( N s N ω N d , N ) ) operations. The application of the Born operator to a vector requires O ( N ω N s μ ( N ) ) work, where μ(N) is the cost of solving a forward scattering problem. We propose an approximate SVD method that, under certain conditions, reduces these work estimates significantly. For example, the asymptotic cost of factorizing and applying the Born operator becomes O ( μ ( N ) N ω ) . We provide numerical results that demonstrate the scalability of the method.
Keywords :
Inverse acoustic scattering , Born approximation , Randomized singular value decomposition , Full-waveform inversion , Multiple sources , Recursive singular value decomposition , Lippmann–Schwinger integral equation
Journal title :
Journal of Computational Physics
Serial Year :
2012
Journal title :
Journal of Computational Physics
Record number :
1484380
Link To Document :
بازگشت