Title of article :
Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method
Author/Authors :
Celledoni، نويسنده , , E. and Grimm، نويسنده , , V. and McLachlan، نويسنده , , R.I. and McLaren، نويسنده , , D.I. and O’Neale، نويسنده , , D. and Owren، نويسنده , , B. and Quispel، نويسنده , , G.R.W.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
20
From page :
6770
To page :
6789
Abstract :
We give a systematic method for discretizing Hamiltonian partial differential equations (PDEs) with constant symplectic structure, while preserving their energy exactly. The same method, applied to PDEs with constant dissipative structure, also preserves the correct monotonic decrease of energy. The method is illustrated by many examples. In the Hamiltonian case these include: the sine–Gordon, Korteweg–de Vries, nonlinear Schrödinger, (linear) time-dependent Schrödinger, and Maxwell equations. In the dissipative case the examples are: the Allen–Cahn, Cahn–Hilliard, Ginzburg–Landau, and heat equations.
Keywords :
Average vector field method , Dissipative PDEs , Time integration , Hamiltonian PDEs
Journal title :
Journal of Computational Physics
Serial Year :
2012
Journal title :
Journal of Computational Physics
Record number :
1484586
Link To Document :
بازگشت