Title of article :
Surface passivation of crystalline silicon wafer via hydrogen plasma pre-treatment for solar cells
Author/Authors :
Kim، نويسنده , , Young Do and Park، نويسنده , , Sungeun and Song، نويسنده , , Jooyong and Tark، نويسنده , , Sung Ju and Kang، نويسنده , , Min Gu and Kwon، نويسنده , , Soonwoo and Yoon، نويسنده , , Sewang and Kim، نويسنده , , Donghwan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
The carrier lifetime of crystalline silicon wafers that were passivated with hydrogenated silicon nitride (SiNx:H) films using plasma enhanced chemical vapor deposition was investigated in order to study the effects of hydrogen plasma pre-treatment on passivation. The decrease in the native oxide, the dangling bonds and the contamination on the silicon wafer led to an increase in the minority carrier lifetime. The silicon wafer was treated using a wet process, and the SiNx:H film was deposited on the back surface. Hydrogen plasma was applied to the front surface of the wafer, and the SiNx:H film was deposited on the hydrogen plasma treated surface using an in-situ process. The SiNx:H film deposition was carried out at a low temperature (<350 °C) in a direct plasma reactor operated at 13.6 MHz. The surface recombination velocity measurement after the hydrogen plasma pre-treatment and the comparison with the ammonia plasma pre-treatment were made using Fourier transform infrared spectroscopy and secondary ion mass spectrometry measurements. The passivation qualities were measured using quasi-steady-state photoconductance. The hydrogen atom concentration increased at the SiNx:H/Si interface, and the minority carrier lifetime increased from 36.6 to 75.2 μs. The carbon concentration decreased at the SiNx:H/Si interfacial region after the hydrogen plasma pre-treatment.
Keywords :
Hydrogen plasma , Silicon solar cells , passivation
Journal title :
Solar Energy Materials and Solar Cells
Journal title :
Solar Energy Materials and Solar Cells