Title of article :
Numerical dispersion analysis of a multi-symplectic scheme for the three dimensional Maxwell’s equations
Author/Authors :
Cai، نويسنده , , Wenjun and Wang، نويسنده , , Yushun and Song، نويسنده , , Yongzhong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
23
From page :
330
To page :
352
Abstract :
In this paper, we study a multi-symplectic scheme for three dimensional Maxwell’s equations in a simple medium. This is a system of PDEs with multi-symplectic structures. We prove that this multi-symplectic scheme preserves the discrete version of local and global energy conservation law and the discrete divergence. Furthermore, we extend the discussion to several dispersion properties of the multi-symplectic scheme including the numerical dispersion relation, the numerical group velocity, the effect of large time steps and the CFL condition.
Keywords :
Conservation law , Dispersion relation , Group velocity , Multi-symplectic scheme , Maxwell’s equations
Journal title :
Journal of Computational Physics
Serial Year :
2013
Journal title :
Journal of Computational Physics
Record number :
1485043
Link To Document :
بازگشت