Title of article :
An optimal linear solver for the Jacobian system of the extreme type-II Ginzburg–Landau problem
Author/Authors :
Schlِmer، نويسنده , , N. and Vanroose، نويسنده , , W.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
This paper considers the extreme type-II Ginzburg–Landau equations, a nonlinear PDE model for describing the states of a wide range of superconductors. Based on properties of the Jacobian operator and an AMG strategy, a preconditioned Newton–Krylov method is constructed. After a finite-volume-type discretization, numerical experiments are done for representative two- and three-dimensional domains. Strong numerical evidence is provided that the number of Krylov iterations is independent of the dimension n of the solution space, yielding an overall solver complexity of O ( n ) .
Keywords :
Ginzburg–Landau equations , Preconditioning , algebraic multigrid
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics