Title of article :
Forward and adjoint sensitivity computation of chaotic dynamical systems
Author/Authors :
Wang، نويسنده , , Qiqi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
This paper describes a forward algorithm and an adjoint algorithm for computing sensitivity derivatives in chaotic dynamical systems, such as the Lorenz attractor. The algorithms compute the derivative of long time averaged “statistical” quantities to infinitesimal perturbations of the system parameters. The algorithms are demonstrated on the Lorenz attractor. We show that sensitivity derivatives of statistical quantities can be accurately estimated using a single, short trajectory (over a time interval of 20) on the Lorenz attractor.
Keywords :
Unsteady adjoint , Adjoint Equation , Chaos , Lyapunov Exponent , Lorenz attractor , Sensitivity analysis , linear response , Lyapunov covariant vector , Statistical average
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics